

HA with Pacemaker Cloud

High availability management for cloud providers
http://pacemaker-cloud.org/

Pádraig Brady, Red Hat
Feb 4th, 2012

http://pacemaker-cloud.org/

Overview

● Define Pacemaker Cloud's role using
availability parameters

● Give a practical example of using Pacemaker
Cloud along with other interesting technologies

● A = MTBF / (MTBF + MTTR)
● MTBF = Mean Time Between Failures
● MTTR = Mean Time To Repair

 = Probability that system is operable at an unspecified time

 = 0 .. 1

● High Availability is achieved through the manipulation of
MTBF and MTTR parameters of system design to meet
availability requirements.

High Availability

Techniques to increase Availability

● Increase MTBF

● system specific, so outside scope

● Just improve your software :)

● Decrease MTTR

● React better to failure

● Can benefit from automation

● active-active

● Can also run systems in parallel to increase A

● Used for very specialized apps, or low level like RAID

● But complex and invasive to your stack

● active-passive

● Passive system is used to decrease MTTR

● Essentially the case we're considering

● online calculator http://www.pixelbeat.org/docs/reliability_calculator/

● Example a VM needs a restart once a week, and takes around 30s to restart.

● I.E. MTBF=168h and MTTR=0.01h (low MTBF, but also low MTTR)

● active-active is parallel case

● active-passive is single (not series) case

•
A = 0.99994 (4 nines)

http://www.pixelbeat.org/docs/reliability_calculator/

active - passive

● Traditionally the passive standby was "Hot" or "Cold"

● Hot standby

● Machine running in parallel

● Can quickly assume the last known state of active

● But...

– Consumes resources for power and under utilized hardware

– Implementation complexity for auto failover

● Reduce MTTR (to minute range)

● Cold standby

● Identical system in storage

● Requires support staff to provision

– For a standard computer: rack, swap disks, etc.

● Reduce MTTR (to hour range)

● Warm standby

● Cloud blurs the distinction between "hot" and "cold"

● Can consider a new VM as a provisioned cold standby

● Much reduced MTTR, as hardware is abstracted away

● Swapping disks is now reconnect to shared storage etc.

● Also have reduced resource usage as the standbys share hardware.

● So there is a natural synergy between HA management and Cloud!

Pacemaker Cloud

● HA management can be modeled as a rules engine.

● events -> rules -> actions

● events

● fault detection

● Matahari agents currently used

● rules

● modeled entities

–
cloud provider

–
group of VMs (deployable)

–
VM (assembly)

–
software service (application)

● escalation

–
restart VM if app fails 3 times in 1 hour

–
restart deployable on new cloud provider, if...

● Central rules (policy) engine from the pacemaker

–
Mature engine used in traditional clusters

● actions

● Restart entity (provision the warm standby)

–
isolate, terminate, start new

● Application control

–
matarhari agents currently used

● VM and cloud control

–
Openstack, Aeolus, oVirt

Pacemaker Cloud + Openstack demo

● http://www.pixelbeat.org/docs/pacemaker-cloud/
● These instructions are an easy way to try the

following in a practical way on Fedora 16
– http://pacemaker-cloud.org/
– http://openstack.org/
– http://libvirt.org/
– http://libguestfs.org/
– http://aeolusproject.org/oz.html

● Shows httpd restart, and escalation to VM restart

http://www.pixelbeat.org/docs/pacemaker-cloud/
http://pacemaker-cloud.org/
http://openstack.org/
http://libvirt.org/
http://libguestfs.org/
http://aeolusproject.org/oz.html

Demo overview

● Recipes for building VM images from upstream
installation images

● Example is wordpress using 2 VMs and shared storage
● Monitoring and Notification for instances of those

The resource [httpd] in assembly [assy-wp-F16] in deployable [dep-wp] FAILED.
The deployable [dep-wp] is RECOVERING.
A service recovery escalation terminated assembly [assy-wp-F16] in deployable [dep-wp].
The assembly [assy-wp-F16] in deployable [dep-wp] FAILED.
The assembly [assy-wp-F16] in deployable [dep-wp] is ACTIVE.
The resource [httpd] in assembly [assy-wp-F16] in deployable [dep-wp] is ACTIVE.
The deployable [dep-wp] is ACTIVE.
 MySql IP: 10.0.0.3
 Wordpress IP: 10.0.0.4

Pacemaker Cloud Timeline

● 0.0.0 March 2011

● Empty repo

● 0.4.0 July 2011

● Released in Fedora 15

● First basic implementation and architecture

● F14 guest image support

● 0.5.0 Nov 2011

● Released in Fedora 16

● REST API to cped process for integration with other IAAS platforms

● F15, F16 guest image support

● 0.6.0 Jan 2012

● Openstack integration

● resource and assembly escalation recovery

● development of a multi-instance deployable with Mysql/Wordpress

● U10, U11, RHEL guest image support

● 0.7.0 March 2012 - completed infrastructure

● ssh-only monitoring dped version

● direct integration with libdeltacloud in the dpe process

● dependencies between resources/assemblies

● reimplement cped into python for simpler IAAS platform integration

● F17 guest image support

● 0.9.0+

● focus on integration with IAAS platforms

● merge with distros beyond Fedora

Summary

Reliability modeling is easy and generally useful

http://www.pixelbeat.org/docs/reliability_calculator/

http://pacemaker-cloud.org/ reduces MTTR

The demo is an easy way to try OZ & Openstack etc.

http://www.pixelbeat.org/docs/pacemaker-cloud/

http://www.pixelbeat.org/docs/reliability_calculator/
http://pacemaker-cloud.org/
http://www.pixelbeat.org/docs/pacemaker-cloud/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

